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Abstract: We study the medium-induced energy loss −∆E0(Lp) suffered by a heavy

quark produced at initial time in a quark-gluon plasma, and escaping the plasma after

travelling the distance Lp. The heavy quark is treated classically, and within the same

framework −∆E0(Lp) consistently includes: the loss from standard collisional processes,

initial bremsstrahlung due to the sudden acceleration of the quark, and transition radia-

tion. The radiative loss induced by rescatterings −∆Erad(Lp) is not included in our study.

For a ultrarelativistic heavy quark with momentum p & 10GeV, and for a finite plasma

with Lp . 5 fm, the loss −∆E0(Lp) is strongly suppressed compared to the stationary col-

lisional contribution −∆Ecoll(Lp) ∝ Lp. Our results support that −∆Erad is the dominant

contribution to the heavy quark energy loss (at least for Lp . 5 fm), as indeed assumed

in most of jet-quenching analyses. However they might raise some question concerning the

RHIC data on large p⊥ electron spectra.

Keywords: QCD, Jets.

∗On leave of absence from LAPTH, CNRS, UMR 5108, Université de Savoie, B.P. 110, F-74941 Annecy-
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1. Introduction

The attenuation of jets — jet quenching — was initially suggested by Bjorken [1] as a pos-

sible signature of the quark-gluon plasma (QGP). Since, the suppression of hadron spectra

at large transverse momentum p⊥, in ultrarelativistic heavy ion compared to proton-proton

collisions, has been observed [2, 3] at the Relativistic Heavy Ion Collider (RHIC). Until

recently this suppression (and other features of jet quenching) seemed consistent [4] with

the energy loss −∆Erad of the parent parton due to gluon radiation induced by its rescat-

terings [5, 6] in the hot or dense medium created in the heavy ion collision.

However, recent experimental data on the p⊥-spectra of electrons arising from heavy

flavour decays [7, 8], when compared to theory [9], suggest that heavy quarks lose more

energy than −∆Erad only.1 It was suggested in ref. [11] that this ‘single electron puzzle’

might be solved by the collisional energy loss, previously neglected in the total parton

energy loss. However, one should remember that other sources of medium-induced energy

loss are usually neglected, namely the Ter-Mikayelian (TM) effect and transition radiation.

Thus it would be incorrect to invoke collisional loss without studying the effect of the latter

radiative contributions.2 Transition radiation and the TM effect have already been studied,

for instance in refs. [12, 13] and [14] respectively. In this paper we present a theoretical

model allowing to treat consistently the zeroth order of the (heavy quark) energy loss in an

opacity expansion [6], denoted as −∆E0, which includes the TM effect, transition radiation,

1It is stressed in ref. [10] that this statement might be somewhat premature, since the theoretical

calculation of heavy quark production suffers from large uncertainties already in proton-proton collisions,

and also because the contributions to the electron spectra from charm and beauty are not yet separated

experimentally.
2We stress again that the TM effect and transition radiation are radiative contributions distinct from

that induced by rescatterings −∆Erad.
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and collisional energy loss. Our main result is shown in figure 3. For Lp . 5 fm we find

that −∆E0 is suppressed compared to the collisional loss −∆Ecoll, indicating that −∆Erad

should be dominant for such values of the plasma size (contrary to what is suggested

in [11]), and leaving the ‘single electron puzzle’ unsolved.

In section 2 we present our theoretical model, which is inspired from that of ref. [15],

in the case of an infinite medium. We assume the heavy quark to be produced in a hard

subprocess at initial time, in a static QGP of high temperature T and small coupling g ¿ 1.

The latter hypothesis implies the hierarchy 1/T ¿ rD ¿ λ, where 1/T is the average

distance between two constituents of the QGP, rD = 1/mD ∼ 1/(gT ) is the Debye radius

and λ ∼ 1/(g2T ) is the mean free path of the heavy quark. Under these hypotheses, we can

describe the QGP via its collective response to the current [16], where the (longitudinal

and transverse) dielectric functions are obtained from the gluon polarization tensor. In [15]

we studied the mechanical work W undergone by the heavy quark when travelling in

the (infinite) plasma, and used the hard thermal loop (HTL) [17] approximation for the

dielectric functions. In section 2 we show that to a very good accuracy, the model of [15]

can be simplified by assuming an isotropic plasma described by the dielectric function (2.8).

In fact, in the ultrarelativistic limit γ = E/M = 1/
√

1 − v2 → ∞ we are considering (M ,

E and v being the heavy quark mass, energy and velocity), the model (2.8) reproduces

exactly the results of [15] for the work W . At finite but large γ À 1, the differences

between the HTL approximation and the simple model (2.8) are numerically negligible, as

shown in figure 1. We end section 2 by a critical discussion. We indeed stress that in the

academic case of an infinite QGP, the mechanical work W calculated in [15] should not be

interpreted as an observable energy loss (contrary to what was done in [15]). This is due

to the fact that the quark asymptotic (t = +∞) states are different in vacuum and in an

infinite QGP [18].

In section 3 we consider the more realistic case where the quark is produced in a hard

subprocess in a finite size (but still static) QGP, and travels the distance Lp before escaping

the medium. In this case the “asymptotic” quark states are the same in vacuum and in the

presence of the medium, and it is legitimate to interpret the work −W as the (medium-

induced) quark energy loss, provided one includes transition radiation. We thus study the

heavy quark energy loss −W ≡ −∆E(L,Lp), where L is the total distance travelled by

the (deconfined) quark, related to the quark hadronization time as L = vthad ∼ vγ/ΛQCD.

We assume the heavy quark to be relativistic enough so that it hadronizes outside the

medium, thad ' L À Lp. We also consider a high temperature QGP, with a Debye mass

mD ∼ gT À ΛQCD. The hadronization time being larger3 than the other relevant length

scales of the problem Lp and 1/mD, the loss −∆E(L = ∞, Lp) ≡ −∆E0(Lp) will be the

main quantity of interest, affecting the final hadron (or decay electron) p⊥-spectrum. The

calculation of transition radiation fields in section 3 is done using the simple model (2.8)

motivated in section 2, and our final result for the zeroth order energy loss −∆E0(Lp) is

shown in figure 3.

3For a charm quark the assumption thad À Lp should be reasonable in practical applications where

Lp . 5 fm and E ≥ 10GeV.
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In the present study we focus on the case of a heavy quark of mass M . Comparing

−∆E0(Lp) to the stationary collisional energy loss −∆Ecoll(Lp) ∝ Lp [19], our estimate

(see (3.9) and figure 3) (−∆Ecoll(Lp) + ∆E0(Lp))/E =
√

2/3CF αsmD/M ' 5%, for a

charm quark of mass M = 1.5GeV and for Lp > 4 fm, is numerically consistent with [13,

20]. However we find explicitly that the reduction of −∆E0(Lp) compared to −∆Ecoll(Lp)

scales as γ when γ → ∞, which can be interpreted as an effective ’retardation’ of the

stationary regime (see figure 3) scaling similarly. We think it is important to extract such

an asymptotic parametric behaviour in order to get a better insight on heavy quark energy

loss, and also in view of applications to heavy ion collisions at higher energies such as those

planned at the Large Hadron Collider. We recall that our calculation includes, in a unique

classical framework, transition radiation, initial bremsstrahlung and collisional processes.

The latter were not included in [12] and were calculated in [20] without the contribution

from transition radiation (calculated separately in [13]). Let us mention ref. [21], where an

effect of interference between elastic and radiative amplitudes is studied. This effect is not

included in our approach.

We stress that our results should be taken at the qualitative level only. Indeed, we

work in an ideal framework, where the medium created in the heavy ion collision is assumed

to be a static, equilibrated, high temperature QGP with small coupling g ¿ 1. We also

work in the fixed coupling approximation. In the case of a running αs we expect the slope

(−dE/dx)coll of the stationary collisional loss to be independent of E when E → ∞ [22],

contrary to the result for fixed αs [16, 19] which is logarithmic in E (see (3.10)). Despite

this reduced energy dependence, (−dE/dx)coll with running αs might be larger than in

the fixed coupling approximation, because it behaves as (−dE/dx)coll ∝ αs instead of

∝ α2
s [22, 23]. We thus cannot exclude that a larger (−dE/dx)coll than usually assumed

partly compensates the drastic suppression we find for −∆E0(Lp . 5 fm). A consistent

calculation of −∆E0(Lp) (and of the slope of its asymptote (−dE/dx)coll) with running αs

is needed to answer this question.

2. Infinite medium: theoretical model and critical discussion

In this section we first recall the model used in [15] (which was directly adapted from

ref. [16]) to study the mechanical work W undergone by a heavy quark produced at t = 0

in an infinite QGP, and travelling the distance L in the plasma. We then simplify this

model in order to focus on its essential feature.

We start from the expressions of the longitudinal and transverse (chromo-)electric fields

in momentum space K = (ω,~k),

~Ea
L =

4π

iω

~ja
L

εL
; ~Ea

T =
4π

iω

~ja
T

εT − k2/ω2
, (2.1)

which follow from Maxwell equations in a medium with dielectric functions εL and εT , in

the abelian approximation and within linear response theory. For a heavy quark of color

charge qa (with qaqa = CF αs) produced at t = 0, the classical 3-vector current density ~ja

– 3 –
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is of the form [15]:

~ja(K) = iqa ~v

K.V + iη
, (2.2)

with longitudinal and transverse components given by ~jL = (~j.~k/k2)~k (where k = |~k|) and
~jT = ~j −~jL. The quark 4-velocity is denoted by V = (1, ~v) and assumed to be constant in

the following. Let us mention that we can easily form a conserved 4-current whose vector

component is precisely given by (2.2), for instance by assuming the fast heavy quark to be

produced in conjunction with a static antiquark at t = 0. This was done in ref. [15], where

it was shown that the dominant effect (scaling as γ when γ → ∞, see (2.11) below) on

W arises from the fast quark contribution to the conserved current, given by (2.2). The

precise form of the conserved current used in [15] only affects the longitudinal contribution

to the medium-induced energy loss, which receives a term corresponding to the difference

of the dipole binding energies in medium and in vacuum. When γ À 1 this contribution

is subleading [15] compared to the dominant (transverse) contribution ∝ γ. In the present

study, where we focus on the leading effects scaling as γ, we can thus consider (2.2) as a

relevant model for the current.

In coordinate space the medium-induced electric field reads

~Ea(t, ~x) =

∫

d4K

(2π)4
e−i(ωt−~k.~x)

[

~Ea
L + ~Ea

T

]

ind
, (2.3)

where the ‘induced’ prescription corresponds to subtracting the vacuum εL = εT = 1

contribution. The induced mechanical work W of the electric force on the quark is given

by

− W = −~v ·
∫ L/v

0
dt qa~Ea(t, ~vt)

= −qa~v ·
∫

d4K

(2π)4

∫ L/v

0
dt e−iK.V t

[

~Ea
L + ~Ea

T

]

ind
. (2.4)

In ref. [15] the work W is calculated by choosing for the dielectric functions εL and εT

those of a high temperature QGP. The latter have a rich analytical structure, which some-

what complicates the calculation of the energy loss. In particular, the dielectric functions

have a cut in the spacelike |ω| < k region (physically corresponding to Landau damping),

responsible for the leading large L behaviour,

−W (L) '
L→∞

−∆Ecoll(L) + O
(

L0
)

where − ∆Ecoll(L) ≡
(

−dE

dx

)

coll

L . (2.5)

We are interested in the difference, denoted as d(L), between −W (L) and the stationary

law for collisional loss −∆Ecoll(L),

d(L) = −W (L) + ∆Ecoll(L) = −W (L) +

(

dE

dx

)

coll

L . (2.6)

By definition the function d(L) tends to a constant d∞ when L → ∞.
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It has been shown [15] that for γ À 1, d(L) arises dominantly from the transverse

contribution and from the phase space region k ∼ γmD and x = ω/k → 1. In this limit

the HTL [17] transverse gluon propagator takes a simple form,

∆T (ω = kx, k) =
−1

ω2 − k2 − ΠT (x)
≡ −1

εT ω2 − k2
'

x→1

−1

ω2 − k2 − m2
, (2.7)

where m = mD/
√

2 is the asymptotic (transverse) gluon thermal mass and the retarded

prescription ω → ω + iη is implicit. Thus d(L) can be simply modelled by assuming a

medium with dielectric function

ε(ω) = 1 − m2

ω2
. (2.8)

All medium effects are encoded in the single parameter m. As we will shortly see, the

model (2.8) captures the exact leading order in γ À 1, and will greatly simplify the

calculation of transition radiation in the next section, due to ε(ω) being independent of k

— corresponding to the plasma response involving no spatial dispersion.4 The main effects

included in our calculation — initial bremsstrahlung and transition radiation — will arise

from the domain ω ' k ∝ γm, justifying a posteriori using (2.8). We evaluate (2.4) by

performing the ω-integral using Cauchy’s theorem, and the function d(L) by subtracting

the leading term (linear in L) when L → ∞,

d(L) =
CF αs

π2

∫

d3~k







~v 2
T

sin2
[

(Ek − ~k · ~v)L/(2v)
]

(Ek − ~k · ~v)2
+

+ ~v 2
L





sin2
[

(m − ~k · ~v)L/(2v)
]

(m − ~k · ~v)2
− πL

2v
δ(m − ~k · ~v)











ind

, (2.9)

where Ek =
√

k2 + m2 and the ‘induced’ prescription corresponds to subtracting the value

of the integrand at m = 0. In (2.9) the second line corresponds to the longitudinal contri-

bution, which will be subleading in the following.

The explicit calculation of (2.9) yields:

d∞ ≡ lim
L→∞

d(L) = −2CF αsm

[

1√
1 − v2

− arcsin v

v
+

π

2v

]

, (2.10)

where the last term in the brackets stands for the longitudinal contribution. In the v → 1

limit, (2.10) reproduces exactly the result of [15] obtained within the HTL approximation,

and arises dominantly from the transverse contribution:5

d∞ '
v→1

−
√

2CF αsmD γ . (2.11)

4The isotropy implied by (2.8) obviously imposes εL = εT = ε(ω).
5We note that the longitudinal contribution given in the second line of (2.9) is not the same as in ref. [15].

In particular it does not include the induced binding energy of the dipole created at t = 0. This is because

instantaneous (ω = 0) self-interactions are suppressed in the model (2.8). These details turn out to be

irrelevant since the longitudinal contribution is subleading when γ À 1, both in ref. [15] and in the present

study.
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Figure 1: The function d(L) defined by (2.6) and given by (2.9) in the model (2.8) (thick lines).

We consider a charm quark of mass M = 1.5 GeV, use αs = 0.2, m2 = m2

D/2 = 2παsT
2(1+nf/6) '

(0.32 GeV)2 for nf = 2 flavours and a plasma temperature T = 0.25 GeV. We show d(L) for two

values of the charm quark momentum, p = 10 GeV and p = 20 GeV. The thin straight lines give

the values of d∞ (see (2.10)) for the corresponding values of p. The (HTL) results of ref. [15] for

d(L) are given by the dashed lines.

The numerical evaluation of d(L) is displayed in figure 1, where it is also compared

to the results of [15] obtained with the HTL expressions of the dielectric functions. Since

the results of ref. [15] for d(L) are very accurately reproduced with the simple model (2.8),

we will use the latter model in section 3 in order to derive the ‘zeroth order’ of the heavy

quark energy loss −∆E0(Lp) in a finite QGP.

Before doing that let us discuss (see also [18]) the incorrect interpretation which was

done in [15]. In [15] the stationary collisional loss −∆Ecoll(L) ∝ L [19] was added to d(L),

and the result interpreted as the quark energy loss −∆E(L) in a infinite plasma. Due

to the large negative value of d∞, a significant delay before the onset of the stationary

(linear) behaviour was observed, and designated as ‘retardation effect’. As noted in [15]

this ‘retardation effect’ is not a genuine retardation of purely collisional loss, since various

physical effects contribute to the apparent delay. First, part of the work done on the charge

is due to the initial radiation induced by the sudden acceleration of the quark at t = 0.

Due to the difference between the gluon dispersion relations in medium and in vacuum,

initial bremsstrahlung in QGP differs from that in vacuum. This is the QCD equivalent of

the Ter-Mikayelian (TM) effect, studied in [14] and also properly identified in [15]. In the

limit γ À 1, half of the apparent ‘retardation’ is actually due to the TM effect [15].

As can already be seen in the case of a charge with v ' 1 produced in vacuum,

initial radiation represents only half of the mechanical work done on the charge after its

production. Using Poynting’s theorem we can show that the other half is associated to

the creation of the charge’s proper field. Contrary to what was implicitly done in [15],

this self-energy contribution should not be counted as ‘energy loss’ as it is part of the

charge asymptotic state. With an accurate definition of energy loss in terms of asymptotic

states [18], we find that the retardation time of purely collisional energy loss is quite small,

tret ∼ 1/mD, instead of tret ∝ γ/mD as argued in [15].

In the next section we will consider the more realistic situation, where the quark is

produced in a finite size QGP. In this case the ‘asymptotic’ (we assume the quark to

– 6 –
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hadronize long after escaping the medium) quark self-energy is the same as in vacuum.

Interpreting (minus) the mechanical work on the quark as energy loss is then legitimate,

provided transition radiation is taken into account. Let us stress here that our final result

for −∆E0(Lp) in figure 3 displays an effective time delay tret ∝ γ/mD before the linear

regime. This effective delay is not due to a retardation of collisional energy loss (at least

at leading order in γ À 1), but arises from a non-compensation — already noted in [13]

— between the TM effect and transition radiation.

3. Finite size medium: implementing transition radiation

Here we study how the finite size Lp of the medium affects the work W done on the

heavy quark. Instead of W (L) ≡ W (L,Lp = ∞), we now consider the explicit dependence

of W (L,Lp) on Lp, and implement transition radiation induced by the discontinuity at

L = Lp between medium and vacuum.

We derive transition radiation along the lines of ref. [24]. We assume that the separa-

tion surface between medium and vacuum is a plane located at z = Lp, and that the heavy

quark produced at t = 0 and z = 0 in the medium (with the associated current (2.2)) trav-

els along the z-axis (with vz = v > 0). We denote the medium and vacuum as media 1 and

2, with dielectric functions ε1(ω) given by (2.8) and ε2(ω) = 1. (This is similar to the model

used in [13]). Transition radiation is obtained by adding to the fields (2.1) in both media

some (transverse) fields ~E
′

T solutions of the homogeneous (abelian-like) Maxwell equations.

It is convenient [24] to express these fields in the mixed (ω,~k⊥, z) representation,

~E
′a
T1(ω,~k⊥, z) = 4πqa h1(ω, k⊥) e−iσ1(z−Lp)

(

k2
⊥~ez + σ1

~k⊥

)

~E
′a
T2(ω,~k⊥, z) = 4πqa h2(ω, k⊥) eiσ2(z−Lp)

(

k2
⊥~ez − σ2

~k⊥

)

(3.1)

σi = σi(ω, k⊥) ≡
√

εi ω2 − k2
⊥ ,

where the subscript “⊥” denotes a vector component orthogonal to the unit vector ~ez

specifying the z-axis, the retarded prescription ω → ω + iη is implicit, and the square root

is defined as having a cut along the positive real axis, i.e. such that Im
√

z ≥ 0 for all

complex z. One directly sees that the fields (3.1) satisfy6 the (homogeneous) Gauss and

d’Alembert’s equations, which read ∂zEz + i~k⊥ · ~E⊥ = 0 and (ε ω2 − k2
⊥)~E + ∂2

z
~E = ~0 in

the mixed representation.

With our definition of the square root we have

σi =











sign(ω)
√

εi ω2 − k2
⊥ for εi ω

2 > k2
⊥ region (i)

i
√

k2
⊥ − εi ω2 for εi ω

2 < k2
⊥ region (ii)

. (3.2)

The electric field in coordinate space arises from either region (i) or (ii) in momentum

space. The contributions from region (i) correspond to a superposition of plane waves

6Recall that the permittivity does not depend on kz in the model (2.8).
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propagating with decreasing z (for ~E
′

T1) or increasing z (for ~E
′

T2), in a direction specified

by the wave vector ~k = (~k⊥,−σ1) or ~k = (~k⊥, σ2). The absence of components ∝ e+iσ1z in
~E

′

T1 and ∝ e−iσ2z in ~E
′

T2 is dictated by the transition fields being created at the interface

between medium (z < Lp) and vacuum (z > Lp), so that no wave comes from z = −∞ in

the medium or from z = +∞ in the vacuum. The contributions from region (ii) correspond

to surface waves which decay exponentially in the longitudinal distance. Including terms

∝ e+iσ1z in ~E
′

T1 and ∝ e−iσ2z in ~E
′

T2 would be unphysical as they diverge for z → −∞ and

z → +∞ respectively. We stress that both types of waves (plane waves and surface waves)

are simultaneously included in our framework by defining the square root with a cut along

the positive real axis (with the implicit retarded prescription ω → ω + iη).

The functions h1 and h2 in (3.1) are obtained by requiring that the total (inhomoge-

neous) fields

~Ea
1 = ~Ea

L1 + ~Ea
T1 + ~E

′a
T1

~Ea
2 = ~Ea

L2 + ~Ea
T2 + ~E

′a
T2 (3.3)

are consistent with the continuity of the components ~E⊥(t, ~x⊥, z) and ~Dz(t, ~x⊥, z) at the

transition surface z = Lp. We evaluate h1(ω, k⊥) and h2(ω, k⊥) explicitly in appendix A.

The results are given by (A.8) and (A.10).

The work −W (L,Lp) is given by an expression similar to (2.4), but we now have to

specify whether the quark is in medium 1 or medium 2 (the vacuum) at time t:

−W (L,Lp) = −qa~v ·
∫ L/v

0
dt

{

Θ(Lp − vt)~Ea
1 (t, ~vt) + Θ(vt − Lp)~Ea

2 (t, ~vt)
}

. (3.4)

The medium-induced fields are related to the total fields (3.3) which include the transition

fields. Instead of (2.3) we have

~Ea
i (t, ~x) =

∫

d4K

(2π)4
e−i(ωt−~k.~x)

[

~Ea
Li + ~Ea

T i + ~E
′a
T i

]

ind
. (3.5)

Inserting (3.5) in (3.4) and subtracting the leading term (linear in L) when L → ∞ we get:

d(L̂) − W ′(L,Lp) ≡ d′(L,Lp) ; L̂ ≡ Min{L,Lp} , (3.6)

where d(L) is given by (2.9) and the contribution −W ′(L,Lp) arises from the transition

fields:

−W ′(L,Lp) = −qa~v ·
∫

d4K

(2π)4

{

∫ L̂/v

0
dt e−iK.V t ~E

′a
T1 +

+ Θ(L − Lp)

∫ L/v

Lp/v
dt e−iK.V t ~E

′a
T2

}

. (3.7)

Using the mixed representation (3.1) of the transition fields and integrating over time we

obtain:

−W ′(L,Lp) =
CF αs

2π

∫ ∞

0
dk2

⊥ k2
⊥

∫ ∞

−∞

dω ×
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Figure 2: The function d′(L, Lp) of (3.6) for Lp = 2, 4, 6, 8 and 10 fm (from top to bottom)

together with the function d(L) (lower curve) of figure 1, for p = 20 GeV. The dashed straight lines

represent the asymptote d′
∞

of d′(L, Lp) for the different values of Lp.

×
{

1 − e−i(ω
v
+σ1)L̂

ω
v + σ1

ih1(ω, k⊥) eiσ1Lp + Θ(L − Lp) ×

× e−i(ω
v
−σ2)Lp − e−i(ω

v
−σ2)L

ω
v − σ2

ih2(ω, k⊥) e−iσ2Lp

}

. (3.8)

The function d′(L,Lp) defined in (3.6) is shown in figure 2. For finite Lp, d′(L,Lp) has

a cusp at L = Lp, where the effect of the transition fields on the work done on the heavy

quark starts.7 Most importantly, the asymptote d′∞ of d′(L,Lp) in the limit L À Lp → ∞
scales in γ when γ → ∞ (see (B.8)),

d′∞ '
v→1

1

3
d∞ '

v→1
−1

3

√
2CF αsmDγ . (3.9)

As discussed in the end of section 2, in the case of a finite plasma size it is legitimate

to interpret the mechanical work d′(L = ∞, Lp) as quark energy loss. It is also clear that

d′(∞, Lp) includes the (radiative) contributions from initial bremsstrahlung and transition

radiation. In order to obtain the ‘zeroth order’ loss −∆E(L = ∞, Lp) ≡ −∆E0(Lp), we

must add to d′(∞, Lp) the stationary law −∆Ecoll(Lp) for purely collisional loss. For the

latter we take the HTL result of [19] in the logarithmic accuracy log (kmax/mg) À 1,

− ∆Ecoll(Lp) =
CF αsm

2
DLp

2

[

1

v
− 1 − v2

2v2
log

(

1 + v

1 − v

)]

log

(

kmax

mg

)

, (3.10)

where kmax ≡ min

{

ET

M
,
√

ET

}

and mg = mD/
√

3 .

The resulting energy loss

−∆E(L = ∞, Lp) = −∆Ecoll(Lp) + d′(L = ∞, Lp)

7Strictly speaking, the effect of transition on d′(L, Lp) starts at L = Ls = 2vLp/(1 + v) < Lp, in

agreement with causality, as shown in appendix B, see (B.1). For p ≥ 10 GeV, v ' 1 and the difference

between Ls and Lp cannot be seen on figure 2.
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Figure 3: Charm quark energy loss −∆E0(Lp) = −∆E(L = ∞, Lp) for p = 20 GeV (solid line)

given by (3.11). −∆E0(Lp) is compared to the stationary law (3.10) for collisional energy loss

−∆Ecoll(Lp) (straight line) [19].

= −∆Ecoll(Lp) + d(Lp) − W ′(L = ∞, Lp) (3.11)

is determined by (2.9), (3.10) and (3.8), with the functions h1 and h2 given by (A.8)

and (A.10).

Our result for −∆E0(Lp) is shown in figure 3. We observe an important suppression

of the zeroth order energy loss as compared to the stationary collisional loss −∆Ecoll(Lp).

This is mainly due to the fact that the asymptote d′∞ of d′(L = ∞, Lp), though reduced

by a factor 1/3 compared to d∞ (see (3.9)), still scales as γ when γ À 1. As already

mentioned in the end of section 2, this is due to a non-compensation between the TM

effect and transition radiation. As is obvious from figure 3, we can define an effective

retardation time tret before the linear regime for −∆E0(Lp) sets in,

tret = d′∞/(dE/dx)coll , (3.12)

leading to the scaling tret ∝ γ/mD, thus to a large effective delay. Numerically, tret ' 5 fm

for p = 20GeV. Figure 3 is our main result, which shows that invoking only the heavy

quark collisional energy loss −∆Ecoll(Lp) to explain the ‘single electron puzzle’ is not

satisfactory. Indeed, adding the other relevant contributions (initial bremsstrahlung and

transition radiation) to obtain the energy loss −∆E0(Lp) to zeroth order in an opacity

expansion [6], we find that −∆E0(Lp) ¿ −∆Ecoll(Lp) for in-medium quark path length

Lp . 5 − 7 fm.

4. Conclusion

In this paper we studied the energy loss −∆E0(Lp) of a fast heavy quark produced in a

finite size QGP, to zeroth order in an opacity expansion. −∆E0(Lp) includes collisional

energy loss, initial bremsstrahlung arising from the quark creation at t = 0, and transition

radiation appearing when the quark passes the discontinuity between medium and vacuum.

Only the radiative loss induced by rescatterings in the plasma −∆Erad(Lp) [5, 6] should be
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added to −∆E0(Lp) to obtain the total heavy quark energy loss. Our main result is that

−∆E0(Lp) is strongly reduced compared to the stationary linear law for collisional loss, as

seen on figure 3. Due to the negative shift d′∞ scaling as γ, the linear regime for −∆E0(Lp)

sets in after a quite large effective retardation time tret ∝ γ.

From figure 3 we conclude that for the generic values Lp ∼ 5 fm and p = 20GeV,

the loss −∆E0(Lp) should be negligible, and the total heavy quark energy loss should be

theoretically correctly estimated by −∆Erad(Lp) only. Our results suggest that a missing

contribution to the heavy quark energy loss, as proposed in ref. [11], might not be a correct

explanation for the surprisingly strong nuclear attenuation of large p⊥ electron spectra

from heavy flavour decays.

We already mentioned in the Introduction that our results should be considered at

the qualitative level, in particular because the slope (−dE/dx)coll of the stationary regime

usually considered [16, 19] is modified when the running of αs is taken into account [22].

As discussed in [15], the small L (small Lp) behaviour of figure 1 (figure 3) might also be

affected by the running of αs. However the position and scaling in γ of the asymptotes d∞
and d′∞ (see (3.9) and figure 3) should be unaffected by the running of the coupling [15],

leaving unchanged the main result of the present study.
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A. Derivation of the transition fields

In this appendix we obtain the functions h1(ω, k⊥) and h2(ω, k⊥) defining the transition

fields (3.1). Written in the mixed space (ω,~k⊥, z), the continuity conditions at the surface

z = Lp read:
[

~Ein
1 (ω,~k⊥, Lp) + ~E

′

T1(ω,~k⊥, Lp)
]

⊥
=

[

~Ein
2 (ω,~k⊥, Lp) + ~E

′

T2(ω,~k⊥, Lp)
]

⊥
(A.1)

[

~Din
1 (ω,~k⊥, Lp) + ε1

~E
′

T1(ω,~k⊥, Lp)
]

z
=

[

~Din
2 (ω,~k⊥, Lp) + ε2

~E
′

T2(ω,~k⊥, Lp)
]

z
(A.2)

where the color index is implicit and the inhomogeneous fields are given by (i = 1, 2)

~Ein
i (ω,~k⊥, z) =

∫

dkz

2π
eikzz

[

~ELi(ω,~k⊥, kz) + ~ET i(ω,~k⊥, kz)
]

(A.3)

~Din
i (ω,~k⊥, z) = εi(ω) ~Ein

i (ω,~k⊥, z) . (A.4)

Using the definition (3.1), we can easily solve for the functions h1 and h2. We find from

the above continuity conditions:

h1(ω, k⊥) =
ε2 − ε1

ε1σ2 + ε2σ1
[ε2J + σ2K]

h2(ω, k⊥) =
ε1 − ε2

ε1σ2 + ε2σ1
[−ε1J + σ1K] , (A.5)
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with

J =
qa~k⊥ ·

[

~Ein a
2 (Lp) − ~Ein a

1 (Lp)
]

⊥

4πCF αsk2
⊥(ε2 − ε1)

and K =
qa

[

~Din a
2 (Lp) − ~Dina

1 (Lp)
]

z

4πCF αsk2
⊥(ε2 − ε1)

. (A.6)

Using (2.1) (with εLi = εT i = εi) and (2.2) we obtain:

J(ω, k⊥) =
v

ωε1ε2

∫

dkz

2π

eikzLp kz
[

(ε1 + ε2)ω
2 − k2

]

(ω − vkz)(ε1ω2 − k2)(ε2ω2 − k2)

K(ω, k⊥) = −vω

∫

dkz

2π

eikzLp

(ω − vkz)(ε1ω2 − k2)(ε2ω2 − k2)
. (A.7)

From (A.5) and (A.7) we readily check that hi(−ω, k⊥) = hi(ω, k⊥)∗. Hence the transition

fields (3.1) satisfy ~E
′

T (−ω,−~k⊥, z) = ~E
′

T (ω,~k⊥, z)∗, ensuring the reality of the fields in

coordinate space. We can further put (A.5) in the form

h1(ω, k⊥) = i
(ε2 − ε1)ω

ε1σ2 + ε2σ1
I1

h2(ω, k⊥) = i
(ε1 − ε2)ω

ε1σ2 + ε2σ1
I2 , (A.8)

where the functions I1 and I2 read

I1 ≡ − iv

ε1ω2

∫

dkz

2π

eikzLp

(ω − vkz)(ε1ω2 − k2)

[

kz(kz + σ2) − ε1ω
2

kz + σ2

]

I2 ≡ − iv

ε2ω2

∫

dkz

2π

eikzLp

(ω − vkz)(ε2ω2 − k2)

[

kz(σ1 − kz) + ε2ω
2

kz − σ1

]

(A.9)

We calculate I1 and I2 by closing the contour of the kz-integral in the upper half of the

complex plane. We obtain:

I1 =
1

ε1ω2







ei ω
v

Lp(σ2
ω
v − ε1ω

2 + ω2

v2 )
[

ω2

v2 − σ2
1

]

[

ω
v + σ2

]

+
eiσ1Lp(σ1σ2 − k2

⊥)

2σ1

[

σ1 − ω
v

]

(σ1 + σ2)







(A.10)

I2 =
1

ε2ω2







ei ω
v

Lp(σ1
ω
v + ε2ω

2 − ω2

v2 )
[

ω2

v2 − σ2
2

]

[

ω
v − σ1

]

+
eiσ2Lp(σ1σ2 + k2

⊥)

2σ2

[

σ2 − ω
v

]

(σ2 − σ1)
+

ε2 eiσ1Lp

(ε1 − ε2)
[

σ1 − ω
v

]







The transition fields (3.1) are determined by (A.8) and (A.10), where we recall that the

retarded prescription ω → ω + iη is implicit, and that the square root satisfies Im
√

z ≥ 0

for complex z.

B. Some properties of −W ′(L, Lp)

Here we study some features of the contribution −W ′(L,Lp) to the heavy quark energy

loss (see (3.8) and (3.11)) which arises from the transition fields (3.1). We first show that

this contribution is consistent with causality. Then we derive, for γ À 1, the limit of

−W ′(L,Lp) for L À Lp → ∞. This limit corresponds to the amount to be added to the

asymptotic value d∞ of d(L) to reach the asymptote d′∞ of d′(L) (see figure 2).
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Causality. From causality the heavy quark cannot be sensitive to the transition fields

right after its production at t = 0. The effect of transition fields can start only when a

signal emitted by the quark at t = 0 (and z = 0) along the positive z-axis has had time

to reach the medium-vacuum separation surface located at z = Lp, and to come back to

the position of the quark. Since the quark is moving with velocity v, and the largest speed

of light in a medium of permittivity (2.8) is unity (corresponding to ω → ∞), this time

is given by ts = Ls/v = 2Lp − Ls. Thus −W ′(L,Lp) must vanish when the quark has

travelled less than the distance Ls,

L < Ls =
2vLp

1 + v
⇒ −W ′(L,Lp) = 0 . (B.1)

The latter causality requirement can be proved directly from (3.8). For L < Lp only

the first term in the bracket of (3.8) contributes. Inserting the expression of h1 given

by (A.8) and (A.10) we obtain:

−W ′(L,Lp)
∣

∣

L<Lp
=

CF αs

2π

∫ ∞

0
dk2

⊥ k2
⊥

∫ ∞

−∞

dω

ω

ei(ω
v
+σ1)Lp − ei(ω

v
+σ1)(Lp−L)

ω
v + σ1

1 − ε2/ε1

ε1σ2 + ε2σ1
×

×







σ2
ω
v − ε1ω

2 + ω2

v2

[

ω2

v2 − σ2
1

]

[

ω
v + σ2

]

+
ei(σ1−

ω
v
)Lp(σ1σ2 − k2

⊥)

2σ1

[

σ1 − ω
v

]

(σ1 + σ2)







. (B.2)

Recalling (see section 3) that the square root satisfies Im
√

z ≥ 0 for complex z, we can

perform the ω-integral by closing the integration contour in the upper half-plane provided

the phase

2σ1Lp −
(ω

v
+ σ1

)

L (B.3)

has a positive imaginary part when |ω| → ∞ in this half-plane. Since for Imω > 0 the

integrand of (B.2) has no singularity (which can be easily checked) and σ1 ' ω when

|ω| → ∞, we obtain that −W ′(L,Lp) vanishes when 2Lp > (1+1/v)L, which proves (B.1).

Limit of −W ′(L,Lp) when L À Lp → ∞. We first consider the limit of −W ′(L,Lp)

for L → ∞ at fixed Lp. This represents the amount brought by transition radiation, to

be added to −∆Ecoll(Lp) + d(Lp) (see (3.11)) in order to get the heavy quark energy loss

−∆E0(Lp) represented in figure 3. For a fast quark, γ À 1, this limit is given by the

second term of (3.8), where the term with a rapidly oscillating phase factor ∝ e−i(ω
v
−σ2)L

is neglected:

−W ′(L → ∞, Lp) =
CF αs

2π

∫ ∞

0
dk2

⊥ k2
⊥

∫ ∞

−∞

dω
e−i ω

v
Lp(ε2 − ε1)ω

[

ω
v − σ2

]

(ε1σ2 + ε2σ1)
I2 , (B.4)

where we used (A.8) and I2 is given in (A.10).

We now evaluate the limit of (B.4) when Lp → ∞. In this limit only the first term of

I2 in (A.10) contributes to (B.4), the two other terms oscillating rapidly. We get:

−W ′(L,Lp)
∣

∣

LÀLp→∞
=

CF αs

2π

∫ ∞

0
dk2

⊥ k2
⊥

∫ ∞

−∞

dω

ω
×
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×
(1 − ε1/ε2)

(

σ1
ω
v + ε2ω

2 − ω2

v2

)

(ε1σ2 + ε2σ1)
[

ω
v + σ2

] [

ω
v − σ2

]2 [

ω
v − σ1

]

. (B.5)

The latter integral can be evaluated for γ À 1 by anticipating that it arises dominantly

from the domain ω ∼ γm and k⊥ ∼ m. Approximating the integrand in this region and

using (2.8) (and ε2 = 1) we obtain

−W ′(L,Lp)
∣

∣

LÀLp→∞
'

v→1

m2CF αs

π

∫ ∞

0
dk2

⊥ k2
⊥

∫ ∞

−∞

dω

(ω2

γ2 +k2
⊥)2(ω2

γ2 +k2
⊥+m2)

. (B.6)

The latter double integral can be exactly evaluated, yielding (use m = mD/
√

2):

−W ′(L,Lp)
∣

∣

LÀLp→∞
≡ d′∞ − d∞ '

v→1

2

3

√
2CF αsmDγ . (B.7)

The expression (B.6) is also trivially shown to be dominated by ω ∼ γm, k⊥ ∼ m, justifying

our initial approximation. The result (B.7) is exactly 2/3 of |d∞|, see (2.11). Hence:

d′∞ '
v→1

1

3
d∞ '

v→1
−1

3

√
2CF αsmDγ . (B.8)

Finally, we note that in (A.10) the second and third terms of I2, which have been

neglected to extract the large Lp limit of (B.4), are proportional to the phase factors

e−i(ω
v
−σ1,2)Lp . When ω ∼ γm À m and k⊥ ∼ m we can approximate, for instance,

(ω

v
− σ1

)

Lp ' Lp

2ω

(

ω2

γ2
+ k2

⊥ + m2

)

∼ O (Lpm/γ) , (B.9)

Thus the large Lp limit used above should be understood as Lp À γ/mD, where the

neglected terms are indeed rapidly oscillating. In this limit the function d′(L,Lp) is close

to its asymptote d′∞, i.e., the energy loss −∆E0(Lp) including the effect of transition

radiation (see figure 3) is close to its asymptotic regime.
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